Interannual variability of the South China Sea throughflow inferred from wind data and an ocean data assimilation product

نویسندگان

  • Dongxiao Wang
  • Qinyan Liu
  • Rui Xin Huang
  • Yan Du
  • Tangdong Qu
چکیده

[1] The Luzon Strait transport, as an index for the South China Sea throughflow, has attracted much attention recently. In this study the interannual variability of Luzon Strait transport is examined, using the Island Rule and results from ocean data assimilation. Transport variability obtained from these two approaches is consistent with each other. Assessment of contribution from each integral segment involved in the Island Rule indicates that wind stress in the western and central equatorial Pacific is the key factor regulating the interannual variability of the Luzon Strait transport, whereas the effect of local wind stress in the vicinity of the Luzon Strait is secondary. Analysis also shows that when the westerly (easterly) wind anomalies in the tropical Pacific break out, the Luzon Strait transport increases (decreases), associated with the variations in the North Equatorial Current during El Niño (La Niña) events. Citation: Wang, D., Q. Liu, R. X. Huang, Y. Du, and T. Qu (2006), Interannual variability of the South China Sea throughflow inferred from wind data and an ocean data assimilation product, Geophys. Res. Lett., 33, L14605, doi:10.1029/2006GL026316.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Observations and proxies of the surface layer throughflow in Lombok Strait

[1] Seasonal to interannual variability of the Lombok Strait surface layer transport is investigated. The geostrophic transport within the surface layer is estimated from the cross-channel pressure gradient measured by a pair of shallow pressure gauges positioned on opposing sides of Lombok Strait during 1996-1999. The Ekman transport through Lombok Strait, derived from scatterometer winds, is ...

متن کامل

Enhanced Predictions of Tides and Surges through Data Assimilation (TECHNICAL NOTE)

The regional waters in Singapore Strait are characterized by complex hydrodynamic phenomena as a result of the combined effect of three large water bodies viz. the South China Sea, the Andaman Sea, and the Java Sea. This leads to anomalies in water levels and generates residual currents. Numerical hydrodynamic models are generally used for predicting water levels in the ocean and seas. But thei...

متن کامل

مطالعه دمای سطح آب و انتقال اکمن در ناحیه خلیج فارس

  The wind drift motion of the water which is produced by the stress of the wind exerted upon the surface of the ocean is described by Ekmans theory (1905). Using the mean monthly values for the wind stress and SST, seasonal Ekman transport for the Persian Gulf was computed and contoured. The geostrophic winds have combined with the SST to estimate the effect of cooling due to Ekman transport o...

متن کامل

NOTES AND CORRESPONDENCE On the Interannual Variability of the Indonesian Throughflow and Its Linkage with ENSO

The Indonesian Throughflow (ITF) variability is assessed using a retrospective analysis of the global ocean based on the Simple Ocean Data Assimilation (SODA) experiment spanning the period 1950–99. A comparison between the 1983–95 observed ITF, and the simulated ITF suggests a reasonably accurate reconstruction of ocean circulation in the vicinity of the ITF during the available measurement re...

متن کامل

Summer Upwelling in the South China Sea and its Role in Regional Climate Variations

Seasonal and interannual variations of summer upwelling off the South Vietnam coast and the offshore spread of cold water are investigated using a suite of new satellite measurements. In summer, as the southwesterly winds impinge on Annam Cordillera—a north-south running mountain range on the east coast of Indochina—a strong wind jet occurs at its southern tip offshore east of Saigon, resulting...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006